LIBAGRAPH(3) LIBAGRAPH(3)

NAME
Agraph - abstract graph library

SYNOPSIS
#include <graphviz/agraph.h>

TYPES
Agraph_t;
Agnode_t;
Agedge _t;
Agdesc t;
Agdisc_t;
Agsym_t;

GRAPHS

Agraph_t *agopen(chaname, Agdesc _t kind, Agdisc_t *disc);

int agclose(Agraph *g);

Agraph_t *agread(@id *file, Agdisc_t *);

Agraph_t *agconcat(Agraph*g, void *chan, Agdisc_t *disc)

int agwrite(Agraph_tg, void *file);

int agnnodes(Agraph *g),agnedges(Agraph_t *g);
SUBGRAPHS

Agraph_t *agsubg(Agraph *g, char *name, int createflag);

Agraph_t *agfstsubg(Agraph*g), agnxtsubg(Agraph_t *);

Agraph_t *agparent(Agraph *g),*agroot(Agraph_t *g);

NODES
Agnode _t *agnode(Agraph*g, char *name, int createflag);
Agnode _t *agidnode(Agraph*g, ulong id, int createflag);
Agnode _t *agsubnode(Agraph*d, Agnode_t *n, int createflag);
Agnode _t *agfstnode(Agraph*g);
Agnode _t *agnxtnode(Agnode*);

int agdelnode(Agraph *g, Agnode_t *n);

int agrename(Agraph *g, Agnode_t *n, char *newname);

int agdgree(Agnode_t *n, int use_inedges, int use_outedges);
EDGES

Agedge _t *agedge(Agnode*tt Agnode_t *h, char *name, int createflag);
Agedge _t *agsubedge(Agrapltg, Agedge_t *e, int createflag);
int agdeledge(Agraph*g, Agedge _t *e);

Agnode _t *aghead(Agedge*e), *agtail(Agedge_t *e);
Agedge _t *agfstedge(Agnode*);
Agedge _t *agnxtedge(Agedgetd, Agnode_t *n);
Agedge t *agfstin(Agnode *n);
Agedge t *agnxtin(Agedge *&);
Agedge t *agfstout(Agnode *n);
Agedge t *agnxtout(Agedge*¢);
FLATTENED LISTS
int agflatten(Agraph_tgraph, int flag);
Agnode _t *agfstn(Agraph_*g), *agnxtn(Agnode_t *n);
Agedge t *agfout(Agnode *n), *agfin(Agnode_t *n), *¥agnxte(Agedge_t *e);

8 MARCH 1996 1

LIBAGRAPH(3) LIBAGRAPH(3)

STRING ATTRIBUTES
Agsym_t *agttr(Agraph_t *g, int kind, char *name, char *value);
Agsym_t *agttrnxt(Agraph_t *g, int kind, Agsym_t *attr);

char *agget(eid *obj, char *name);
char *agxget(wid *obj, Agsym_t *sym);

int agset(weid *obj, char *name, char *value);
int agxset(vid *obj, Agsym_t *sym, char *value);
RECORDS

void *agnavrec(Agraph_t *g, void *obj, char *name, unsigned int size);
Agrec_t *aggetrec(@id *obj, char *name, int mee_to_front);
int agdelrec(Agraph_#g, void *obj, char *name);

CALLB ACKS
Agcbdisc_t *agpopdisc(Agraph*g);
void agpushdisc(Agraph *g, Agcbdisc_t *disc);
void agmethod(Agraph_*g, void *obj, Agcbdisc_t *disc, int initflag);

MEMORY
void *agalloc(Agraph_t *g, size_t request);
void *agrealloc(Agraph_tg, void *ptr, Sze_t oldsize, size_t newsize);
void agfree(Agraph_tg, void *ptr);

GENERIC OBJECTS

Agraph_t *agraphof(@id*);

char *agnameof(@id*);

int agisarootobj(wid*);

Agrec _t *AGDATA (void *obj);

ulong AGID(void *obj);

int AGTYPE(void *obj);
DESCRIPTION

Libagraph supports graph programming by maintaining graphs in memory and reading and writing graph
files. Graphsnodes and edges may be attributed with programmer-defined records and stringalu@me-v

pairs. Graphsre composed of nodes, edges, and nested subgrapéally, Libagraph depends<en-
sively on Libcdt (formerly Libdict) for set representation.

All of Libagraph’s dobal symbols hee the prefixag (case varying).
GRAPHS

A “‘main” or ‘‘root” graph defines a namespace for a collection of graph objects (subgraphs, nodes, edges)

and their attrintes. Objectsnay be named by unique strings or by 32-bit IDs. Bwdkfiata points to
runtime records containing application-dependent dagedkby name (see Atttiites). descrecords if a
graph is directed or undirected, and if it is strict or allows multi-edges and self-arcs.

agopencreates a e graph with the gien name and graph kind descriptor (global values/fagdirected,
Agundirected, Agstrictdirected, and Agstrictundirected). agclosedeletes a graph, freeing all its associ-
ated storageagread and agwrite perform file 1/O (see Graph File Language bslo agsubgcreates a
new subgraph, which abays inherits the graph kind of its parent. Thevrgibgraph is initially empty
Nested subgraph trees may be created. The name of a subgraph is interpreted eelyortilatgiven par-
ent graph.agsubglistreturns a list (possibly empty) of subgraphs ofveergigraph.

By default, nodes are kept in ordered setsimlict, dlowing efficient random access to insert, find, and
delete nodesSimilarly the edges of each node are kept in ordered sets. The sets are maintained as splay

8 MARCH 1996 2

LIBAGRAPH(3) LIBAGRAPH(3)

tree dictionaries.agflatten allows flattening trees into linked lists, which may thereafter bertsad \ery
quickly without function calls for lv overhead in critical sections of code. In this mode, sets are locked to
prevent updates or random access searches, though it is gdlltéecall Libagraph to scan lists sequen-
tially. The flag agument requests flattening and locking (if boolean true), or unlockingl¢#)f In-line
functions or macros for list tvarsal are gien below under Nodes and Edges. Note that flattening a graph
does not automatically flatten its subgraphs.

agnnodes agnedgesand agdegreereturn the cardinalities of node and edge sets. The latter takes flags to
select in-edges, out-edges, or both.

Agdisc_t specifies callbacks woked when initializing, modifying, or finalizinf graph objectgCasual
users can ignore the follang.) Disciplines are kept on a stack. Libagraph automatically calls the methods
on the stack, top-dan. A method can obtain its data (closure) via aggetuserptr.

When Libagraph is compiled with Vmalloc, each graph has its own heap. Programmers may allocate appli-
cation-dependent data within the same heap as the rest of the graph. The advantage is that a graph can be
deleted by atomically freeing its entire heap without scanning each individual node and edge.

NODES
A node is identified uniquely by name and graph poinNwmde pointers are not unique— separate node
structs are created per subgraptame pointers are unique, though, because each graph has its own shared
string pool.

agnodesearches in a graph or subgraph for a node with trem giame, and returns it if found. If not
found, if createflagis boolean true a menode is created and returned, otherwise a nil pointer is returned.
agsubnodetakes an existing node as a template, usually to find or insert a node in a subgraph.

The default ordering of nodes is by order of creation (sequethatrnally Libagraph switches between
ID searching and sequence ordering as necessafgtnode and agnxtnode are the usual functions for
scanning node lists. When node sets are flattened it is permissible tgfstlodeand agnxtnode but
conflicting attempts to insert, delete, or search for nodes cause a runtime error.

EDGES
An abstract edge is represented by sdge structs.There is one pointing to each terminal node, and resid-
ing in an edge list of the opposite nodehe object tag distinguishes between these otherwise symmetric
records, to allev obtaining head and tail. If a graph has multi-edges between the same nodes, the name
field serves as a secondamsyk

agedgesearches in a graph of subgraph for an edge betweenvimeegdpoints (with an optional multi-
edge selector name) and returns it if fou@therwise, ifcreateflagis boolean true, a meedge is created
and returned: otherwise a nil pointer is returnédhe nameis (char*)0 then an anonymous internalue

is generatedagfstin, agnxtint, agfstout, and agnxtout visit directed in- and out- edge lists, and ordinarily
apply only in directed graphsagfstedgeand agnxtedgevisit all edges incident to a node. Inuessing

lists, e->node alays points to the‘'other” node of the edge,dlresohe anbiguity between in- and out-
edge structsagheadandagtail are macros or inline functions to find endpoints by checking object tags.
agopp returns the‘opposite’ edge struct. Similarly agfout, agfin, and agnedgeoperate on flattened edge
lists.

STRING ATTRIBUTES
Programmedefined walues may be dynamically attached to graphs, subgraphs, nodes, and Suages.
values are either uninterpreted binary records (for implementing efficient algorithms) or character string
data (for 1/0). String attributes are handled automatically in reading and writing grapHJfilegerpreted
records are ignored; wresired comersion must be coded explicitly by application programmers.

A string attribute is identified by hame and by an internal symbol table eAggyfm_1) created by Liba-

graph. Attritutes of nodes, edges, and graphs (with their subgraphs)dy@arate namespaces. The con-
tents of amAgsym_tis listed belav, followed by primitives to goerate on string attributes.

8 MARCH 1996 3

LIBAGRAPH(3) LIBAGRAPH(3)

typedef struct Agsym_s { /* symbol in one of the abalctionaries */

Dtlink_t link;
char *name; /[* attribute’s nrame */
char *def\al; /* its default value for initialization */
int id; [* its index in attr[] */
}Agsym_t;

agattr creates or looks up attrbes. kind may be AGRAPH, AGNODE, or AGEDGE. If value is
(char*)0), the request is to search for an existing attribute of thendind and name.Otherwise, if the
attribute already exists, its default for creatingvnabjects is set to the wgn value; if it does not exist, a
new attribute is created with thegin default, and the default is applied to all pre-existing objects of the
given kind.

agdictof returns a Libdict set of all the atttites of a gien kind. agdictsymis a utility function that finds
an entry in one of these dictionary sets.

aggetand agsetread and update string atwiles. Thefirst argument should be a graph, node, or edge
struct pointer agxsetandagxsettake asymbol table entry reference instead of a nameydilahe cost of
looking up attriite names inside loops. Note that Libagraph performs its own storage management of
strings. Thecalling program does not need to dynamically allocate storage.

RECORDS
Uninterpreted records may be attached to graphs (subgraphs), nodes, and edges for efficient operations on
values such as marks, weights, counts, and pointers needed by algofpplisation programmers define
the fields of these records, butyhevea common header as shown b&lo

typedef struct Agrec_s {

char *name;

struct Agrec_s *next;

[* programmer-defined follows */
}Agrec t;

Records are created and managed by Libagraph. In each graph, node, datdgeints to a circular list

of records. The name field distinguishes arious types of records, and is programmer defined (Libagraph
resenes the prefix ag. next stores the list pointers. The remainder of a record may contain application-
dependent fieldsagnewreccreates one merecord of the gien s9ze and attaches it to thevgn object
(graph, node, or edgepngdelrecis the corresponding function to delete recordggetrecfinds a record

with the given name.

To dlow referencing application-dependent data without function calls or linear search, Libagragh allo
setting and locking thdata field of a graph, node, or edge on a particular recdtte move_to_front flag

may beAG_MTF_FALSE, AG_MTF_SOFT, or AG_MTF_HARD accordingly The AG_MTF_SOFT

field is only a hint that decreasegethead in subsequent calls ajgetre¢ AG_MTF_HARD guarantees
that a lock was obtainedlo release locks, useG_MTF_SOFT or AG_MTF_FALSE. Use of this fea-
ture implies cooperation or at least isolation from other functions also using Weg@rivont corvention.

A cast (generally using a macro or inline function) is then needed t@rtdine data pointer to an appro-
priate programmer-defined type.

DISCIPLINES
Programmexidefined disciplines customize certain resources- ID namespace, menttiO - needed by
Libagraph. Adiscipline struct (or NIL) is passed at graph creation time.

8 MARCH 1996 4

LIBAGRAPH(3) LIBAGRAPH(3)

struct Agdisc_s { [* uses dscipline */
Agmemdisc_t *mem;
Agiddisc_t *id,;
Agiodisc_t *io;

b

A default discipline is supplied when NIL isvgn for ary of these fields.

An ID allocator discipline alls a client to control assignment of IDs (uninterpreted 32-bit values) to
objects, and possibly fhaothey are mapped to and from strings.

struct Agiddisc_s { /* object ID allocator */
void *(*open)(Agraph_t*g); /* associated with a graph */
int (*map)(wid *state, int objtype, char *stulong *id, int createflag);
int (*alloc)(void *state, int objtype, ulong id);

void (*free)(void *state, int objtype, ulong id);
char *(*print)(void *state, int objtype, ulong id);
void (*close)(wid *state);

}s

open permits the ID discipline to initialize yadata structures that maintains per individual graps.
return value is then passed as the first argument to all subsequent ID manager calls.

alloc informs the ID manager that Libagraph is attempting to create an object with a specific IBsthat w
given by a dient. ThelD manager should return THE (nonzero) if the ID can be allocated, &LSE
(which aborts the operation).

free is called to inform the ID manager that the object labeled with tee M is about to go out of xds-
tence.

map is called to create or look-up IDs by string name (if supported by the ID manager). Retutdihg TR
(nonzero) in all cases means that the request succeeded (with a valid ID stored through result. There are
four cases:

name != NULL and createflag == 1: This requests mapping a string (e.g. a name in a graph file)unto a ne
ID. If the ID manager can complyen it stores the result and returnsUBR Itis then also responsible for
being able to print the ID again as a string. Otherwise the ID manager may return FAL&Hnist
implement the following (at least for graph file reading and writing to work):

name == NULL and createflag == 1: The ID manager creates a uniguéDnef its own choosing.
Although it may return ALSE if it does not support anonymous objects, but this is strongly discouraged
(to support "local names" in graph files.)

name != NULL and createflag == 0: This is a hamespace probe. If the name was previously mapped into
an allocated ID by the ID managéren the manager must return this ID. Otherwise, the ID manager may
either return FALSE, or may storeyannallocated ID into result. (This is cagnient, for example, if names

are known to be digit strings that are directly\eted into 32 bit values.)

name == NULL and createflag == 0: forbidden.

print should return print is allowed to return a pointer to a statfte a caller must cgpits value if
needed past subsequent calls. NULL should be returned by ID managers that do not map names.

The map and alloc calls do not pass a pointer to the newly allocated object. If a client needs to install
object pointers in a handle table, it can obtain them wiaahgect callbacks.

8 MARCH 1996 5

LIBAGRAPH(3)

struct Agiodisc_s {

}s

int (*fread)(wid *chan, char *buf, int bufsize);
int (*putstr)(wid *chan, char *str);
int (*flush)(void *chan); [* sync */

[* error messages? */

struct Agmemdisc_s { /* memory allocator */

void *(*open)(void); [* independent of other resources */

void *(*alloc)(void *state, size_t req);

void *(*resize)(wid *state, void *ptrsze_t old, size_t req);

void (*free)(void *state, void *ptr);
void (*close)(wid *state);

EXAMPLE PROGRAM
#include <graphviz/agraph.h>
typedef struct mydata_s {int x,y,z;} mydata;

main(int argc, char **argv)

{

Agraph_t *g;
Agnode_t *v;
Agedge t *e;
Agsym_t *attr;
Dict t *d

int cnt;
mydata *p;

if (g = agread(stdin,NIL(Agdisc_t*))) {
/* dtsize() is a Libdict primitie */
fprintf(stderr,"%s has %d node attributesO,
dtsize(agdictof(g,AGNODE)));
attr = agattr(g,AGNODE,"color","blue");

[* create a n& graph */
h = ggopen("tmp",g->desc);

/* this is a way of counting all the edges of the graph */
cnt =0;
for (v = agfstnode(g); v; v = agnxtnode(g,v))
for (e = agfstout(g,v); e; e = agnxtout(g,e))
cnt++;

/* using inline functions or macros, attach records to edges */
agflatten(g);
for (v = agfstn(g); v; v = agnxtn(v))
for (e = agfout(v); e; e; = agnxte(e)) {
p = (mydata*) agnewrec(g,e,"mydata”,sizeof(mydata));
p->x = 27; /* meaningless example */

8 MARCH 1996

LIBAGRAPH(3)

LIBAGRAPH(3)

EXAMPLE GRAPH FILES
digraph G {
a->h
¢ [shape=box];
a -> ¢ jweight=29,label="some text];
subgraph anything {
/* the following affects only x,y,z */
node [shape=circle];
a; X;y->z;y->z; I*multiple edges */
}
}

strict graph H {
no -- nl -- n2 -- nO; /* a cycle */
n0--{abcd};, [*astar*
no -- n3;
n0 -- n3 [weight=1]; /* same edge because graph is strict */

}

SEE ALSO
Libcdt(3)

BUGS
The root grapmameis treated as a comment.

There is no way to delete string attributes or modify edys.k

Strings and uninterpreted records could be treatly more uniformly.

AUTHOR
Stephen North, north@research.att.com, AT&T Research.

8 MARCH 1996

LIBAGRAPH(3)

